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Abstract
Objective: The aim of this study was to characterize the capability of detection of the resting state networks (RSNs) with functional
magnetic resonance imaging (fMRI) in healthy subjects using a 1.5T scanner in a middle-income country.

Materialsandmethods:Ten subjects underwent a complete blood-oxygen-level dependent imaging (BOLD) acquisition on a
1.5T scanner. For the imaging analysis, we used the spatial independent component analysis (sICA). We designed a computer
tool for 1.5 T (or above) scanners for imaging processing. We used it to separate and delineate the different components of the
RSNs of the BOLD signal. The sICA was also used to differentiate the RSNs from noise artifact generated by breathing and
cardiac cycles.

Results: For each subject, 20 independent components (IC) were computed from the sICA (a total of 200 ICs). From these ICs,
a spatial pattern consistent with RSNs was identified in 161 (80.5%). From the 161, 131 (65.5%) were fit for study. The networks
that were found in all subjects were: the default mode network, the right executive control network, the medial visual network,
and the cerebellar network. In 90% of the subjects, the left executive control network and the sensory/motor network were
observed. The occipital visual network was present in 80% of the subjects. In 39 (19.5%) of the images, no any neural network
was identified.

Conclusions: Reproduction and differentiation of the most representative RSNs was achieved using a 1.5T scanner acquisitions
and sICA processing of BOLD imaging in healthy subjects.

Abbreviations: AAN = Arousal Network Atlas, AAn = ascending arousal network, ADC = apparent diffusion coefficient, AIC =
analysis of independent component, AN = auditory network, BOLD = blood-oxygen-level dependent, CBLN = the cerebellar
network, DIPY= diffusion imaging in python, DMN= default mode network, DOC= disorder of consciousness, DTI= diffusion tensor
imaging, DTT = diffusion tensor tractography, DWI = diffusion weighted imaging, FA = fractional anisotropy, FC = functional
connectivity, FSL= FMRIB Software Library, LECN= left executive control network, LMICs= low-to-middle income countries, LVN=
lateral visual network, MoCA = Montreal Cognitive Assessment, MVN = medial visual network, ODF = orientation distribution
function, OVN = occipital visual network, RECN = right executive control network, RF = reticular formation, ROI = region of interest,
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rsfMRI = resting-state functional magnetic resonance imaging, sICA = spatial independent component analysis, SMN = sensory/
motor network, TBI = traumatic brain injury, VAN = ventral attention network, VTA = ventral tegmental area.

Keywords: functional dynamic network connectivity, functional magnetic resonance imaging, low-to-middle income countries,
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1. Introduction

When neurons get activated, they are provided with energy by the
adjacent capillaries through a hemodynamic response, increasing
regional cerebral blood flow.[1–3] Consequently, a change in
terms of the relative levels of oxyhemoglobin and deoxyhemo-
globin is produced. Their differential magnetic susceptibilities can
be detected on magnetic resonance imaging (MRI) using the
blood oxygen level–dependent (BOLD) contrast imaging.[3] The
change in the BOLD signal is the principal landmark of functional
magnetic resonance imaging (fMRI).[4,5] As opposed to task-
based fMRI, resting-state fMRI (rsfMRI) is acquired in the
absence of a stimulus or a task. The principle of rsfMRI is also
based on the spontaneous BOLD signal fluctuation.[3]

In 1995, Biswal et al found for the first time the connection and
interaction that unveiled the concept of resting state networks
(RSNs).[6] RSNs are defined as coherent spatial fluctuations in
brain activity, determined in the form of networks, identifiable
when an individual is not engaged in a higher cognitive process.[7]

RSNs are purported to reflect the intrinsic energy demands of
neuron populations that, via firing together with a common
functional purpose, have subsequently wired together through
synaptic plasticity.[8,9] The following canonical networks have
been consistently identified and reproduced in healthy subjects:
default mode network (DMN), sensory/motor network (SMN),
left executive control network (LECN), right executive control
network (RECN), ventral attention network (VAN), auditory
network (AN), cerebellar network (CBLN), and 3 visual
networks (middle [MVN], lateral [LVN], and occipital
[OVN]), which they have allowed physicians to establish a basis
to show divergent patterns as a starting point or as biomarkers to
characterize brain disorders.[10] When Biswal et al described the
initial reports of neural activity a standard clinical 1.5T MRI
scanner was used to perform a task-based fMRI.[6] In the last 2
decades, scanners as well as software for acquisition and
processing of rsfMRIhave beenwidely expanded. The exponential
advent of 3T and 7T (or above) scanners have improved the
analysis of normal and abnormal functional brain connectivity,
with remarkable improvements in temporal and spatial resolution
acquisitions.[11] Even though, for clinical purposes, the availability
of those hardware and software is restricted, due to high costs and
lack of specialized training worldwide.
In addition, cutting edge imaging tests of the brain like the

rsfMRI allow scientists to perform a thorough study of RSNs that
may improve the analysis of brain connectivity in patients with
disorders of consciousness (DOCs). Information in regard of
neurological outcomes of patients with DOCs after traumatic
brain injury (TBI) or acute stroke are scarce. Diffusion tensor
imaging and rsfMRI, among other advanced imaging modalities,
may improve understanding the structural and functional
abnormalities in these disorders. To our knowledge, there are
no studies reported in the literature with a thorough description
of the RSNs with a 1.5 T scanner in low-to-middle income
countries (LMICs). Our study aims to describe a simple and
reproducible protocol to characterize the RSNs with fMRI in

healthy subjects using a standard 1.5T scanner in a middle-
income country.

2. Materials and methods

2.1. Clinical data and study design

Adescriptive retrospective case series was conducted. Ten healthy
adult volunteers were enrolled. All subjects had a nonenhanced
brain MRI registered as “normal” by a former neuroradiologist
(JHM). Patients were enrolled from January 2018 to March
2019. Volunteers with any of the following conditions were
excluded: neurological disorders, contraindications to perform
an MRI (pacemakers, metallic foreign bodies, or severe
claustrophobia) or with abnormal findings on structural MRI
(eg, tumors), or any condition which could not allow to perform a
20-minute study. Additionally, all subjects were also tested with
the Montreal Cognitive Assessment (MoCA) test before the MRI
scan. Demographic, clinical, and radiological information was
collected. Authorization was requested to our Institutional Ethics
Board (committee approval number 068–2016, approved inMay
16th of 2016) to include the information of the subjects in this
study, preserving their identity both in the analysis of the
information and in all images presented. All subjects provided
informed consent for publication of this manuscript. This is a
retrospectively analyzed study with approval by the Fundación
Universitaria de Ciencias de la Salud Review Board.

2.2. Neuroimaging data acquisition

A 1.5T General Electric scanner was used to collect the images.
One hundred and eighty multislice T2∗-weighted functional
images were acquired using axial slice orientation and covering
the whole brain (slice thickness=4.5mm without free space,
matrix=64�64mm, TR=3000ms, TE=60ms, flip angle=90
degree, and FOV=288�288mm). The three initial volumes
were discarded to avoid T1 saturation effects. Finally, a structural
axial T1 (slice thickness=1mm, GAP=1mm, matrix=256�
256mm, TR=670ms, TE=22ms, flip angle=20° and FOV=
250�250mm) and axial T2 (slice thickness=6mm, GAP=1
mm, matrix=320�320mm, TR=6.000ms, TE=96ms, flip
angle=90° and FOV=220�220mm) images were also acquired
for an anatomical reference. Including complete T1 and BOLD
acquisitions, a 20-minute MRI study was performed. All subjects
were instructed to keep their eyes closed and not to fall asleep
during the acquisition. They were not subjected to any external
stimuli. For adequate processing, resting state images were
obtained with T2 echo-planar imaging.[12] The acquisition time
ranged between 6 and 10 minutes, aiming to avoid changes in an
awake state and allow sufficient images to be obtained for the
identification of the RSNs.[13]

2.3. rsfMRI preprocessing

rsfMRI data were preprocessed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/). Preprocessing included: manual realignment,
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automatic realignment, coregistration of functional onto struc-
tural data, segmentation of structural data, normalization into
MNI space, and spatial smoothing with a Gaussian kernel of 8
mm. The spurious variance was reduced by regression of
nuisance waveforms derived of time series extracted from regions
of noninterest (white matter and cerebrospinal fluid). Addition-
ally, nuisance regressors included the BOLD time series averaged
over the whole brain.[14] Finally, small head motions were
corrected using ArtRepair (http://cibsr.stanford.edu/tools/ArtRe
pair/).

2.4. Image analysis

The rsfMRI was decomposed into 20 independent components
(ICs) with the spatial independent component analysis (sICA).
Each IC of each subject was manually labeled by a former
neuroradiologist (JHM), based on visual inspection of spatial
maps and frequency spectra into 10 different RSNs. Those
components which did not meet the assigned criteria were
consequently characterized as noise, reflecting motion artifacts,
physiological noise, or as partial volume effects by the
cerebrospinal fluid. The 10 RSNs described in this study were:
DMN, SMN, LECN, RECN, VAN, AN, CBLN, MVN, LVN,
and OVN. Our previous data were published regarding
functional connectivity, using these RSNs for analysis as well.[15]

The rsfMRI data were aligned, recorded, segmented, and
normalized to visualize over a canonical MNI brain image.

2.5. Statistical analysis

Quantitative variables were calculated using median and
interquartile ranges (IQRs), whereas categorical variables were
demonstrated as absolute frequencies and percentages. All
analytical tests were performed using the Stata statistical software
(version 13).

3. Results

A demographic and clinical description of all subjects was
performed and is reported in Table 1. From all patients, a total of
161 (80.5%) ICs identified the RSNs. From the 161, only 131
(65.5%) were fit for study and are detailed in Table 2. The
networks that were found in all subjects were: the DMN in 26
(13%) of all documented images, the RECN in 21 (10.5%), the
MVN in 11 (5.5%), and the CBLN in 16 (8%). In 90% of the
subjects, the LECN and SMNwere documented in 15 (7.5%) and
12 (6%) images, respectively. The OVN was documented in 8
(4%) images, and was present in 80% of the subjects. In 70% of
subjects, the VAN and the AN were evidenced in 9 (4.5%) and 7
(3.5%) images, respectively. The LVN was present in 60%
subjects, evidenced in 6 (3%) images. In 39 (19.5%) images, no
any neural network was present at all (Figs. 1 and 2).

Other nonstudied networks were evidenced in 30 (15%)
images, with a predominance of the corpus callosum (Fig. 3) and
of the medulla oblongata (a.k.a. bulb) (Fig. 4) networks in 70%
of the subjects, observed in 11 (5.5%) and 9 (4.5%) images,
respectively. Likewise, other networks such as the anterior
capsule and midbrain were observed in 40% of the subjects.
Finally, the anterior medial and temporal frontal networks were
documented in 10% of the subjects as well (Fig. 2). However, it
must be noted that these latter findings could not be differentiated
from any possible methodological or physiological artifact.

4. Discussion

4.1. RSNs functions

The DMN is active during memory recovery and autobiogra-
phy recalling.[16] This network is located in the inferior parietal
cortex, precuneus, anterior and posterior cingulate, temporal
mesial structures that include the dorso-lateral prefrontal
cortex, thalamus, and cerebellum.[17] The SMN is responsible
for sensory-motor processing and includes primary somato-
sensory, primary motor, premotor, and supplementary motor
cortices, as well as the cerebellum. The LECN and RECN are
responsible in general for the perception, selection of actions,
memory, and emotional evaluation. They include bilaterally
the superior, middle, and ventrolateral prefrontal cortices, and
the anterior cingulate. The VAN is the network involved in the
processing of attention; it is in the temporoparietal junction,
in the ventral frontal cortex, the insula, and the cerebellum. The

Table 1

Demographic information of the subjects of the study.

Subject Sex Age Educational level

1 M 40 Technical
2 M 82 Technical
3 F 62 Primary
4 F 36 Professional
5 F 34 Professional
6 F 35 Technical
7 M 61 Technical
8 M 30 Professional
9 M 26 Professional
10 M 26 Professional

Table 2

Resting state networks identified in healthy subjects.

IC (n=200) Subjects with network detected (n=10)
Neural Network n (%) n (%)

DMN 26 (13) 10 (100)
Executive control
RECN 21 (10.5) 10 (100)
LECN 15 (7.5) 9 (90)

Visual
MVN 11 (5.5) 10 (100)
OVN 8 (4) 8 (80)
LVN 6 (3) 6 (60)

CBLN 16 (8) 10 (100)
SMN 12 (6) 9 (90)
Attention 9 (4.5) 7 (70)
Auditory 7 (3.5) 7 (70)
Others
Corpus Callosum 11 (5.5) 7 (70)
Medullar 9 (4.5) 7 (70)
Midbrain 4 (2) 7 (40)
Anterior capsule 4 (2) 4 (40)
Medial frontal 1 (0.5) 1 (10)
Anterior temporal 1 (0.5) 1 10)

No identified RSNs 39 (19.5) 1 (10)

CBLN= cerebellar network, DMN=default mode network, IC= independent component, LVN= lateral
visual network, LECN= left executive control network, MVN=medial visual network, OVN= occipital
visual network, RECN= right executive control network, RSN= resting state network, SMN= sensorial
motor network.
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AN is responsible for auditory processing and is in the bilateral
superior temporal gyrus, involving both primary and secondary
auditory cortices. The CBLN network is intrinsic to the
cerebellum and includes bilateral areas in cerebellar hemi-
spheres and vermis. Finally, the visual networks (LVN, MVN,
and OVN) are responsible for visual processing and are found
in the lateral and medial part of the occipital lobe, involving the
primary and secondary visual cortices.[10,14]

4.2. Identification of the RNSs

Our objective was to characterize the most remarkable RSNs in
healthy subjects with a 1.5T MRI scanner. An automatic
selection method can be used to detect neural networks
and reduce subjectivity in the evaluation of the sICA. For the
analysis of functional connectivity at rest, clustering

algorithms have been used to divide the brain into regions
(groups), which are functionally connected to each other.[18] In
the absence of a standard paradigm design, multivariate
approaches such as the sICA are the most frequently used.[19]

Although the decomposition of the sICA into a fMRI is widely
used to identify neural networks, a standard gold selection
criterion for selecting networks with potential functional
relevance (ie, those involved in motor function, visual
processing, executive functioning, auditory processing, memory
and network default mode) is still missing. We propose a rapid
and useful rsfMRI protocol to detect the most relevant RSNs. It
is important to emphasize that we also found components that
could be related to networks in the corpus callosum and in
the medulla oblongata in several subjects. Even though, these
signals cannot be differentiated completely from any possible
noise.

Figure 1. Resting state networks in healthy subjects. The canonical resting state networks are depicted in the 3 axes: (A) Default mode network, (B) motor/sensory
network, (C) left executive control network, (D) right executive control network, (E) ventral attention network, (F) auditory network, (G) cerebellar network, (H) medial
visual network, (I) lateral visual network, and (J) occipital visual network.
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4.3. rsfMRI acquired with a 1.5T scanner and its
applicability

The fMRI acquisitions depend on temporal physiological
variables as well as thermal noise, conditioning modulations
of the intensity of the image that are further related to the
susceptibility weighting times and the magnetic field too.[20] This

has been demonstrated in previous studies that have compared
1.5T with 3T and 7T scanners, where the acquisition produced
only modest increases in the temporary RSN.[21,22]

fMRI studies have been associated with the National Institutes
of Health Stroke Scale score, where it has demonstrated that there
is a direct relationship between the functional state of brain
connectivity and the neurological outcome in patients assessed on

Figure 2. Graphic illustration of the resting state networks detected in healthy subjects. The detectability in the identification of the canonical resting state networks
is demonstrated.

Figure 3. Corpus callosum signal evidenced in 7 of the studied subjects. Brain activity is demonstrated over time.
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the third day after the stroke, by the way increasing the accuracy
from 84% to 94% as independent predictor of 90-day modified
Rankin Scale, with the use of functional resonance studies.[23] So
we consider that it is important to performmore rsfMRI research
studies with 1.5T scanners in patients with cerebrovascular and
traumatic injuries aiming to further be able to predict long-term
neurological outcomes. In this manuscript, we propose a rapid
and useful rsfMRI protocol to detect the most relevant RSNswith
a 1.5T MRI scanner which could be useful in future clinical
neuroscience and neuropsychiatry investigations. To our knowl-
edge, this study represents the first of his class that thoroughly
describes the RSNs with a 1.5 T scanner for LMICs. We would
like to enhance these findings, as they could be of interest for
further research fields as well as for clinical use in LMICs. The
accessibility to 3T (or above) MRI scanners remains limited
worldwide, but the implementation of these technologies with
1.5T scanners may improve patient healthcare.

4.4. Study limitations

There are several clinical and technical limitations to this study.
First is the small number of patients in whom the rsfMRI was
performed. This algorithm for rsfMRI continues to evolve in the
process of methodological development. rsfMRI is also limited by
factors that include a poor sensitivity of noninvasive measure-
ment of cerebral blood flow and the poor cortical layer specificity
in blood-oxygen-level, because the regulation of blood flow is
nonlocal.[24] In many cases, these limitations may be related to
inadequacies referable to the software level. Furthermore,
this work lacks comparison to imaging data obtained with 3T
(or above) scanners. The low- and middle-income economies of
developing countries limit access to all specialized high-cost
technologies including advanced fMRI. Further research is
needed to clarify signal detected in the corpus callosum and in
the medulla oblongata.

5. Conclusions

RNSs identification was achieved with a 1.5T scanner. Automatic
processing of rsfMRI was conducted successfully as well.
Technical limitations are presented, delineating the most
remarkable findings in healthy subjects. Further research is
needed to be applied in a clinical setting.
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